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Abstract. We investigate the existence of a one-parameter group of contact transformations
for evolution-type equations, = F(t, x, u, uy, uxx, ..., U@m)) (Subscripts denote differentiation
unless otherwise indicated), wherg, is thenth derivative ofu with respect toc. We prove that
contact transformations of evolution equations, wheéris expandable as a power series in terms

of all derivatives of order higher than one, are just extended Lie point transformations. This result
is extended to the case withindependent space variables. As a consequence, we obtain an ansatz
for determining Lie point transformations fath-order evolution equations with independent
space variables. Examples are given to verify the results obtained as well as to show how Lie point
transformations of these evolution-type partial differential equations can be calculated from this
ansatz.

1. Introduction

Evolution equations model a wide variety of phenomena in the physical, biological and
economic sciences. These phenomena range in diversity from heat conduction [1, 2], diffusion
of particles within a media [3-5], stock option pricing on financial exchanges [6] and the study
of waves in quantum mechanics [7,8]. Solving these evolution (diffusion) equations may
not be trivial, especially if they are nonlinear or have a dependence on arbitrary functions.
Lie group theory provides a useful tool for the solution of these partial differential equations.
Many books have been written on this aspect [9-13]. For Lie group theory to be useful
for the solution of evolution-type partial differential equations, the Lie point transformation
generators need to be determined [9—13]. Once the Lie point transformation generators have
been determined, they can be used to obtain special solutions (group-invariant solutions) of
the differential equations under consideration. A reduction in the number of variables and
transformations to other simpler equations which may be easier to solve are also possible. Lie
point transformation generators and their applications to some evolution equations are listed
in [14]. Lie theory has provided insight into many physical phenomena, which may otherwise
not have been possible. In [1] a general similarity solution for the heat equation is determined.
In [8], possible forms of the interaction teri of the time-dependent Sddinger equation

uy +iu, = F(t, x,u,u*) are studied. The arbitrary initial value problem for the Black—
Scholes model in finance is considered in [15]. Contact transformations and their applications
are discussed in Lie [16] as well as [9,10,13]. Contact transformations of second-order
partial differential equations are used in [17] to obtpBeudo-invariansolutions of these
second-order partial differential equations. Contact transformations have also been applied to
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third-order ordinary differential equations to obthiddentransformations [18]. In this paper,

we present a method for calculating Lie point transformation generators for evolution-type
equations which is both simple and ideal for implementation on a computer algebra package
such as MAPLE or MATHEMATICA.

The results of this paper have been applied in [19] to determine Lie point transformations of
nonlinear evolution equations and to perform a group classification on a fourth-order nonlinear
evolution equation describing the effects of non-uniform surface tension on the spreading of a
thin liquid drop. We do not consider the case of more than one dependent variable as it has been
proven (see [10]) that systems of equations do not admit contact transformations. Aninteresting
property of evolution equations is that they do admit Lie point and non-trivial LaekBind
transformations (see [9, 11]), but they do not admit non-trivial contact transformations as we
will prove.

In section 2 we briefly discuss the notion of a Lie point transformation and present
some well known results for contact transformations which are needed later. In section 3
we prove that evolution equations of the type considered do not admit non-trivial contact
transformations. Examples of applications to evolution equations from mathematical physics
are given in section 4. Concluding remarks are made in section 5.

2. Preliminaries

We only summarize relevant aspects for the case of two independent variables (téme,
one space variable). The reader is referred to Lie [16] and [9-14].
The set of transformations i, x, u) space, namely

t=1(t,x,u,a) X=x(t,x,u,a) u=u(t,x,u,a) Q)

wherea is a real parameter, is a one-parameter group of Lie point transformations if it satisfies
the group properties. The generator of the group of transformations (1) is given by

X = &4t x, u)d, + E%(t, x, u)d, + n(t, x, u)d, @)
whered, = 3/9¢, 9, = 3/9x, .... The set of transformations i, x, u, u,, u,) space, namely
t=1t(t,x,u,u;, Uy, a) X=X, x,u,u;, Uy,a) U=u(t,x,u,uy, u;,a)

Uy =u;(t, X, u, Uy, Uy, a) Uy = Uy (t, x, U, Uy, Uy, a) ®)

wherea is a real parameter, is a one-parameter group of contact transformations if it satisfies
the group properties and

ou ou
u; = 5 Uy = = 4)
hold. The generator of a group of contact transformations is
Y= %‘l(t, X, U, U, Uy)O; +52(t, X, U, Up, Uy )0y + (2, X, U, Uy, Uy )0,
0 (t, X, u, uy, Uy )0y, + ot X, 1, Uy, Uy )0y, (5)

The Lie characteristic function is defined by
W=n—ut"—us& (6)
The functionst?, £2 andy can be given in terms oV as

sl = _Wu, 52 = _Wux n= W — quu, - Mqu,,(- (7)
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The formulae for;s can easily be written in terms &f as

=W, +uWw, o= W, +u, W,. ®)
Higher-order prolongations can be calculated from the prolongation formulae

Cirigoiy = Diy .. Diy (W) — Wy ujiy i, s=12,... 9)
with summation ory, whereD; is the operator of total differentiation given by

Di = 0y, +u;0y +u;j0,; +---. (10)

If W is linear in the first derivatives, andu,, then the contact transformation generator (5)
reduces to an extended Lie point transformation generator of (2).

3. Contact transformations of evolution-type equations

We begin with second-order evolution equations in two independent variablest(tand,one
space variable). We then consider third-order evolution equations and thereafter naturally
extend the result to the generdh-order(n > 2) evolution-type equations in two independent
variables. This result is then further extended to the case aftanrder evolution equation
in m independent space variables.

First, we show that contact transformation generators of second-order evolution-type
partial differential equations

uy = F(t, x,u, uy, Uyy) FuU 5’50 (11)
where
F(t, X, U, iy, ) = ub @t x, u,uy) (12)

with summation over the repeated indgxare just extended Lie point transformation generators
given by

X = a(t)d, + Bt, x, u)d, +y(t, X, u)d,. 13)
To determine contact transformations of (11) we solve the determining equation

}?(M[ - F(ta X, U, Uy, MXX))}(].].) = 0 (14)

whereX is the prolongation of the operator (5) in termsif Expanding (14) and separating
by the mixed derivatives?, andu,, we obtain

u?; Wy F,. =0 (15)

Uyt Uxx Wy, YWy, + Wy, )F, = 0. (16)
SinceF,  # 0, equation (15) implie®,,,, = 0 and therefore

W =u,Ci(t, x,u,uy) +Co(t, x,u,u,) a7

whereC; andC; are as yet arbitrary functions of x, u andu,. Substituting (17) into (16)
and first separating hy,, and then by, we find thatC; = C1(¢) and thus (17) becomes

W =u,C1(t) + Ca(t, x, u, uy). (18)

If the series (12) is infinite, then one need only consider the truncated series up to some index
r (see example 1). In general, most of the coefficigntsof the series (12) will be zero; e.qg.
for the heat equation, = u,, we observe thap; = 1 andy;, = 0 for k # 1. Substituting
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F into the determining equation and separating by the highest powey, sfamelyu”** we
obtain

Wit Cy, =0 (19)

and therefore

Co = u,Ca(t, x,u) + Ca(t, x, u) (20)
whereC3; andCy are arbitrary functions af, x andu. Equation (18) is now

W =u,C1(t) +u,Cs(t, x, u) + Cq(t, x, u). (22)
From (7) we deduce that

El=—Ci(t) & =-Cat,x,u)  n=Calt,x,u). (22)
Hence, the transformation generator corresponding to (21) is given by

X = —C1(t)d, — C3(t, x, u)d, + Ca(t, x, u)d,. (23)

Thus contact transformation generators of (11) are just extended Lie point transformations
which have the form (13).

We now show that contact transformation generators of third-order evolution-type partial
differential equations

U = F(t» Xy Uy Uy, Uxx, uxxx) Funx 750 (24)
where
j k
F(t,x,u,uy, Uyy, Uyxy) = ”;’cxxuxx¢j,k(l, X, U, Uy) (25)

with summation over the repeated indiceandk, are just extended Lie point transformation
generators given by (13). This is easily shown. Indeed, to find contact transformations of (24)
we solve the determining equation

X(uy = F (8,3, 0, s s )] g = O (26)

whereX is the prolongation of the generator (5) in termsif Expanding (26) and splitting
by the mixed derivatives,, u,,, andu,,, easily gives

UytUyyr- Wu,u, Fu)LU =0 (27)
Upxr:  (Uxx Wiu, T s Wy, + qu,)Fu =0. (28)

XXX

SinceF,  # 0, from (27) we obtair,, ,, = 0 and therefore

W =u,Cyi(t, x,u,uy) + Cot, x,u, uy) (29)

whereC; andC; are as yet arbitrary functions ofx, u andu,.. Substituting (29) into (28) we
obtainC; = C1(¢) and therefore (29) becomes

qutcl(t)-'-cz(taxvu?ux)‘ (30)

If the series (25) is infinite, then only a truncation of this series needs to be considered. We
substituteF into the determining equation and first separate by the highest power, of
Then we separate the resulting equation by the highest powey, of We obtain (19) and
hence (23). Thus contact transformation generators of (24) have the form (13).

Itis now easy to generalize the above and prove the result forttherder case.
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Theorem 1. Contact transformation generatorsith-order evolution-type partial differential
equations of the form

ut:F(tyxau’uxvuxxa"'vu(n)) Et(n) #O (31)
whereu,, = 9"u/dx" and the functionF' can be written as a power series in terms of the
derivativesiu ), u,—1), - - - , Uxx, are just extended Lie point transformation generators given
by (13).

Proof. We again solve the determining equation. This time

}?(ul_F(ta'xauvuxvux)m-"7M(11))|(31)=0 (32)

whereX is the prolongation of the generator (5) given in termdiaf Expanding (32) and
separating by the mixed derivatives2u?, /dx"~2 andd"2u,, /dx"~2 gives

an72u2
Wj: Wu,u,Fu(”) =0 (33)
an72uxt
(uxx Wi, T ux Wy, + Way )Fu =0. (34)
8x”,2 x U t t (n)
SinceF,,, # 0, from (33) we have tha¥,,,, = 0 and hence
W =u, Ca(t, x, u, uy) + Co(t, x, u, uy) (35)

whereC; andC; are as yet arbitrary functions ofx, u andu,. Substituting (35) into (34) we
again obtairC; = Cy(r) and therefore (35) can be written as

W =u,C1(t) + Co(t, x, u, uy). (36)

If the series expansion df in (31) is infinite, then only a truncation of this series needs to
be considered. Substitufeinto the determining equation and separate firstly by the highest
power of the termu(,,. The resulting equation is then separated by the highest power of the
termu,_1, . .., until finally we separate by the highest power of the termto obtain (20)

and hence (23). Thus contact transformation generators of (31) have the form (13).00

Hence (22) is the necessary ansatz to use to determine Lie point transformations of (31).
When using a computer package such as MAPLE or MATHEMATICA it could be useful to
work with (21) instead. Then one need only keep trackoihstead o&?, £2 ands.

Corollary 1. Linear evolution-type equations
up = U Cp(t, X) + (n—1)Croa(t, x) + - +u, Co(t, x) +uCo(t, x) + a(t, x) (37)

whereC;, for j =0, ..., n, are arbitrary functions of andx, do not admit non-trivial contact
transformation generators. They collapse to generators of the form (13) which are extended
Lie point transformation generators.

Theorem 2. Contact transformation generatorsith-order evolution-type partial differential
equations inm independent variables of the form

u,=F@t,z,u,u®,u®, ... u™) (38)

wherex = (x1, xo, ..., x,) andu'/) is the set of alljth derivatives of; with respect to the
space variableg and the functiorF can be written as a power series in terms of the derivatives
u®™, u=b . u@, arejust extended Lie point transformation generators.
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Proof. The proof of theorem 2 follows directly from the proof of theorem 1. The required
determining equation is given by

Xu, — F(t,z,u,u®, u®, ..., u(”))|(38) =0 (39)

and the Lie characteristic functid# is an arbitrary function of, z, u andu™ to be determined.
Separating (39) by derivatives sfmixed in time and space, we obtain

W =a()u + B, x, u,u?) (40)

whereq is an arbitrary function of andg is an arbitrary function of, =, u andu®. As
before, if the power-series expansion #01in (38) is infinite, only a truncation of this series

is considered. Substitut€ into the determining equation and separate firstly by the highest
power of one of the terms™. The resulting equation is then separated by the highest power
of one of the terma™ Y, ..., until finally we separate by the highest power of one of the
termsu @ to obtain thaf is linear in the derivatives®, and therefordV is linear in terms of

the derivativegu,, u®}. Hence, the contact transformation generators of (31) have the form

X =a®)d,+ Y Bilt,m, u)dy, +y(t, T, u)d,. (41)
i=1

|

As a consequence of theorem 2, fdh-order evolution-type equationsinindependent
variables the required ansatz for determining Lie point transformations in terms of the Lie
characteristic function is given by

W=a@u+Y Cit.z.u)u, (42)
i=1

wherex is an arbitrary function of andC; is an arbitrary function of, x andu. Alternatively,
using the fact that
£ =-w,, n=w—uW, j=1....m (43)

with summation over the repeated indéx equation (43) gives the required ansatz for
determining Lie point transformations from the standard approach. When using a computer
algebra package like MAPLE or MATHEMATICA, it could be more convenient to work with
the Lie characteristic functio, as one need only keep track &f.

4. Examples

Examples verifying the results of theorem 1 are listed under the subheading example 1.
Examples showing applications of the results from theorems 1 and 2 for determining Lie
point transformations are given under the subheading example 2.

4.1. Example 1

In this example we verify that for an infinite series, the required ansatz for the Lie characteristic
function to determine Lie point transformations is given by (21).
Consider the equation

U; = SiNU,y. (44)
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The series expansion of si, is given by

SINU, = Uyy — %ufx+1—§ou)5€x+-~-. (45)
Using (45), equation (44) is

_ 1.3 4 1.5
Up = Uy — FUy F Topllay T (46)

The determining equation (14) wheFe= u,, — gu3, + $35u>, +- - and (46) holds becomes
Wi = (u_,(x - %uix + 1_2014; +- ')WM + (u)zcx Wiu, + 2 ittx Wiy, + "‘yzcr Wi, +ttxx W,

+2quxx Wuul + 2uxuxt Wuu, + M)ZC Wuu + 2uxx qux

+ 203 W, + 20, Wy + Wo) (1= 3u2 + Zul +--.) =0. (47)
We can separate (47) by the mixed derivativésandu,, to obtain (18) independently of the
truncation of the series. Substitute (18) into (47). Truncating the series after three terms and
separating by the highest power of the derivative namelyx®_we obtain (19) and hence
(21).

Consider Burgers’ equation

Uy = Ully + Uy, (48)
The determining equation (14) with = uu, + u,, andu, = uu, +u,, reduces to
(W - (I/H/tx + uxx)Wu, - MquX) Uy — Wt - (I/H/tx + uxx)Wu + (Wx + Uy Wu) u

(U2, Wi, + 2t Wou, + 1% Wi, + tex Wy + 20005 Wi,

+2quxf Wuu, + M)%Wuu + zuxx vau,Y + zuxl qu, + 2”)( qu + Wxx) = O (49)
Separate (49) by the mixed derivatives andu,, to obtain

Wu,u, =0 Uxx Wu,ux +uy Wuu, + qu, =0 (50)

and hence (18). Substituting (18) into (49) and separating?byve obtain (19) and hence
(21).
Consider the general Hopf equation

Uy = —uly + (k(u)ux)x (51)

The determining equation (14) with = —uu, + (k(u)u,), andu, = —uu, + (k(u)u,), is
given by

(W — (—uity + (k@) )W, — ue Wi ) (—tay + K" )l + k' (u) )
—W, — (—uu, + k’(u)u)zc + kW u )Wy + (Wy +u, W) (—u + 2k (w)u,)
(U2 W, + 2t Wou, + U2 Wi, + U Wiy + 200 Wi,
+ 20 iy W, + U Wy + 200 Wy, + 200 W, + 2ux Wy + Wiy )k () = 0.
(52)

As before separate (52) by the mixed derivativdsandu,, to obtain (18). Substituting (18)
into (52) and separating by, we obtain (19) and hence (21).
Consider the equation

u, = uifcg (53)
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Substituting (53) withF = w2 into the determining equation (14) we obtain

2
+ Zuxruxx Wu,ux + Uy, Wu,u, + Uy Wu + 2“): Uxx VVuuY

xUx

Wy W, W,
+2“xuxthu, + M)ZCWuu + 2y W.XMX + Zuxthu, +2u, Wy + Wxx)%u;xz/s =0.
(54)

The result follows as from the previous examples.

Note that we have chosen to verify the results from theorems 1 using second-order
examples due to the simplicity of their determining equations. For third and higher-order
equations the determining equations are longer. However, the result still holds.

4.2. Example 2

In this example we use the ansatz

W = Ci(t) u, + Co(t, x, u) uy + C3(t, x, u) (55)
to obtain Lie point transformations of the heat equation

Uy = Uy (56)
The determining equation (14) with = u,, and where (56) holds reduces to
— Wi — e W + (2, Way + 2000t Wogu, + 12, Wo, + 1x Wy + 200 Wi,

20y W, + U Wy + 200 Woy, + 205 Wy, + 2u, Wey + W) = 0. (57)

Substituting the required ansatz (55) into (57) and separating by the remaining derivatives of
u we obtain

C3r — C3Ax =0 Czt — 2C3w — Czu =0 C3W + 2C2w =0 (58)
CL —2C,, =0  Cp =0.

Solving the system (58) we obtain
W = (%t()ll + %xzcxl + %ou + 016) u+p(t,x)+ (%xtal + %xaz +tog+ a5) Uy
+(%12(X1+l(¥2 +O[3) Uy (59)

where they;s are constants and the functity, x) satisfies3, — 8., = 0. Substituting (59)
into (7) we obtain the Lie point transformation generators

Y, =0 Y, =0, Y3 =uo, Y, = 2t0; + x0; Y5 = 2t9, — xud,

o B ; - (60)
Yo = 4120, + 4xtd, — (2t + xD)ud, Ys = B(t, x)d,

which were determined by Lie [20].
To determine Lie point transformations of the two-dimensional heat equation
Up = Uy + Uyy (61)

we impose the ansatz

W =Ci@)u, +Colt, x, y,u)uy + Ca(t, x, y, u) uy + Ca(t, x, y, u) (62)
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on the determining equation obtained from (39) wies: u,, +u,, and (61) holds. Separating
the resulting determining equation by the remaining derivativesveé obtain the system
C4T — C4XX — C4” =0 C3r — 2C4,vu — Cgu — ngy =0 C4W + 2C3y“ =0
Cy —Cp,, — CZW —-2Cy. =0 sz +2C3 =0 Cy, + 2C, =0

i u u xu
3

(63)
=0, 2C2_‘, + 2C3X =0 C, =0 C; =0
C,—2C3, =0  Cy —2Cp =0

U U

which can easily be solved to give
1 2 2
W= §(4ta1 +x%ay + yag tdxoay t dyas + 8cxg) u+ B, x,y)
1 1 1 1
+(§yt(x1 + 502 +itog t o7 — xag) uy + (Ext(xl + X002 +toagtost yag) Uy
+(%t2a1 +tap +az) u (64)

where theo;s are arbitrary constants arf satisfies the equatioff, — 8. — B8,y = O.
Substituting (64) into (43) we obtain the Lie point transformation generators

Y, =20, Y, = 0, Y3=20, Y4 = yod, — x0, Ys = uo,
Ys = 210, — xud, Y7 = 219y + yud, Yg = 210, + x0, + yd, (65)
Yo = 4129, + 4xtd, + 4ytd, — (4 +x% + y*)ud, Yp = B(t, x, y)d,.
To determine Lie point transformations of the nonlinear evolution equation
Up = Uyylyyy T uzuxuy (66)

we impose the ansatz (62) on the determining equation obtained from (39) When
Upyllrxy + u?u u, and (66) holds. Separating the determining equation by the remaining
derivatives oz and solving we obtain

W = aqu + (a3 — %Y(OM +Tas)) uy + (xas + o) uy + (%t(llﬂm — 3as) +a1) uy (67)
where thay;s are constant, and hence from (43), we obtain the Lie point symmetry generators
Y, =9, Yo = 0, Y3 =0y

(68)
Yy = —11t9, + yo, + 4uo, Ys = 3t0, — 4x 0, + 7y0,.

5. Concluding remarks

We have shown that evolution equations of the type considered do not admit a non-trivial one-
parameter group of contact transformations. Consequently, we have shown that the required
ansatz to determine Lie point transformations of evolution-type equations from the contact
transformation approach is given by (42). The contact transformation approach is useful for
determining Lie point transformations of evolution equations when using a computer algebra
package such as MAPLE or MATHEMATICA as one needs to keep tradk ahly instead

of the&'s andy.

Exact solutions for evolution equations can be determined from their classical [10-14]
and non-classical [21] symmetries. Notwithstanding, Feinsilver and co-workers [22—25] have
shown that, in particular, polynomial solutions of evolution equations can be given in terms of
Appell systems (see equation (4.3) on p 262 [23]). Further work needs to be done to establish
a possible link between the Lie method as used here and the method discussed in [22—-25].
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